

CS 4732
MACHINE VISION

PROJECT 4

DEEP LEARNING

INSTRUCTOR

 Dr. Mahmut KARAKAYA

Michael Rizig

001008703

2

1. ABSTRACT

In this project, we are tasked with taking a pretrained deep learning neural net and

retraining it on our own dataset. For this project, I’ve decided to go with AlexNet as it is a simple

to set up, transfer learn, and is an effective approach to this objective. We then must retrain our

CNN on the DR and nonDR for different learning rates, batch sizes, and epochs. Comparing

these results will help us optimize and correct our learning and training to hopefully get better

accuracy. Finally, we must create a table for our results to compare.

To view all edits, changes, and see step by step revision history, view this project on my GitHub:

https://github.com/michaelrzg/CS4732-Projects

2. TEST RESULTS

2.1 Augmentation Options
For training, we utilized many different learning rates, minibatch sizes, and max-epochs

and compares their accuracy to determine which will perform the best. A table of each
configuration is displayed below including its datagen arguments.

Figure 2.1: This table displays each run and its configuration.

Run Learning Rate Minibatch Size Max Epochs Arguments

1 .001 16 20 RandxTranslation

2 .001 32 25 RandxReflection

3 .001 32 20 none

4 .0001 16 20
RandxReflection

RandyTranslation

5 .0001 64 30 none

6 .0005 32 20 none

7 .0005 64 25
RandXReflection

RandXTranslation

RandYTranslation

https://github.com/michaelrzg/CS4732-Projects

3

2.2 Accuracy
The table below shows the accuracy of each run. Because of the changing

variables, we have differing accuracy from run to run:

Figure 2.2: Table displaying the accuracy of each run.

2.3 Confusion matrix for best run.

Run 6 was the best performing run of our trials. Below is the confusion matrix.

 Predicted Correctly Predicted Incorrectly Total

DR 221 22 243

Non-DR 153 15 168

 Figure 2.3: Confusion matrix for Run 6.

Run Accuracy

1 .878

2 .880

3 .875

4 .878

5 .895

6 .910

7 .902

4

2.4 Discussion

In this project, we performed transfer learning on AlexNet with our own dataset and fine tuned the
parameters to maximize our accuracy for our dataset. We tried many different configuration, including
tampering with the X an Y translations, reflections. Our primary options were Minibatch size, max epoch,
and learning rate, with these values having the highest impact on results. As we can see from figure 2.2,
our run 6, (.0005 learning rate, 32 Minibatch size, 20 max epoch, no translations) had the best results.
Based on this we created a confusion matrix to show run 6’s accuracy and how well it performed on both
types of data. Our results show that in general, the runs with more augments / transformations performed
slightly worse than runs without. We can also see that the smaller learning rates often performed on par or
better than the larger rates. Given more time, it would be my intention to apply this to a different dataset,
and possibly utilize this in a project with more real world applications.

3. CODE

3.1 Code for deepLearningClassifier.py

Some of the code used below came from the slides presented in class.

Credit: Lecture 12: CNN Architectures (slides 75-76)

Michael Rizig

Project 4: Deep Learing for Classification

001008703

File 1: deepLearingClassifier.py

7/12/2024

#import Alexnet and other tools

import numpy as np

import tensorflow as tf

from keras.preprocessing.image import ImageDataGenerator

from keras.applications import AlexNet

from keras.models import Sequential

from keras.layers import Dense, Flatten, Dropout

from keras.optimizers import SGDimport

from skimage import io

import os

#Prepare Data:

Define data generator (from Lecture 12 Slide 75)

datagen = ImageDataGenerator(

rescale=1./255,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,

validation_split=0.3) # Split data into training and validation

5

Load and prepare data (from Lecture 12 Slide 75)

data_dir = 'Train/' # Path to your data folder

batch_size = 32

train_generator = datagen.flow_from_directory(

data_dir,

target_size=(227, 227),

batch_size=batch_size,

class_mode='categorical',

subset='training') # Use 70% of data for training

val_generator = datagen.flow_from_directory(

data_dir,

target_size=(227, 227),

batch_size=batch_size,

class_mode='categorical',

subset='validation') # Use 30% of data for validation

#create groupings for labels

nonDRLabels = []

DRLabels = []

#retreive labels from title of each image

labels = os.listdir('Train/')

#seperate id from label and pass into correct group

for s in labels:

 tag = s.split('-')[1]

 if tag == '0.jpg':

 nonDRLabels.append(s)

 elif tag == '2.jpg' or tag == '3.jpg':

 DRLabels.append(s)

print(len(nonDRLabels))

print(len(DRLabels))

#load images into memory:

#create list for image objects:

nonDRImages = []

DRImages = []

#load images into list

for s in nonDRLabels:

 nonDRImages.append(io.imread(f'Train/{s}'))

for s in DRLabels:

 DRImages.append(io.imread(f'Train/{s}'))

6

#ensure loading was successful:

assert len(nonDRImages) == len(nonDRLabels) and len(DRImages) == len(DRLabels)

print(nonDRImages[0].shape)

#repeat for test data:

testLabels = os.listdir('Test/')

nonDRTest = []

DRTest = []

for label in testLabels:

 tag = label.split('-')[1]

 if tag == '0.jpg':

 nonDRTest.append(io.imread(f'Test/{label}'))

 elif tag == '2.jpg' or tag == '3.jpg':

 DRTest.append(io.imread(f'Test/{label}'))

#load Alexnet (from Lecture 12 Slides 76)

pretrained = AlexNet.pretrained(weights='imagenet',include_top=False,

input_shape=(1028,1062,3))

for layer in pretrained.layers:

 layer.trainable = False

newModel = AlexNet.Sequential()

newModel.add(pretrained)

newModel.add(AlexNet.Flatten())

newModel.add(AlexNet.Dense(256, activation='relu'))

newModel.add(AlexNet.Dropout(0.5))

newModel.add(AlexNet.Dense(10, activation='softmax')) # Assuming 10 classes

Compile the newModel

newModel.compile(optimizer=SGD(lr=0.001, momentum=0.9),

loss='categorical_crossentropy', metrics=['accuracy'])

Train the newModel

history = newModel.fit(

AlexNet.train_generator,

steps_per_epoch=len(AlexNet.train_generator),

epochs=5,

validation_data=AlexNet.val_generator,

7

validation_steps=len(AlexNet.val_generator))

Save the trained newModel

newModel.save('alexnet_transfer_learning.h5')

